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their official histopathological find-
ings of BRAF negativity. The DNA 
yield (pg) from the extracted tissues 
had a wide distribution with an aver-
age of approximately 1100pg of DNA 
(200–2040 pg, 95% CI) collected in 
the first 50 µl eluted (Figure 4c). 
Diluting the DNA 2- to 4-fold in the 
AS–PCR reaction did not result in 
improved end-point amplification; 
however, increasing the DNA concen-
tration 3- to 5-fold led to stronger 
amplification for certain samples 
(data not shown). This suggests 
that the eluted samples had minimal 

inhibitory substances such as haem 
and its derivatives from blood.

Discussion
The microfluidic chip presented here 
is the first crucial step towards a 
complete micrototal analysis system 
to allow for POC diagnosis of thyroid 
cancer. Such a system would afford 
the patient a better tolerated and non-
operative procedure, quicker diagno-
sis with less time in and out of the 
clinic, more accurate and conclusive 
biopsy results and lower costs in 
terms of materials, equipment and 

manpower. The µSPE chip requires 
less biological sample compared with 
most bench-top sample preparation 
methods (10 mg tissue or <1000 cells 
vs. 100 mg tissue and >100000 cells) 
for reliable nucleic acid extraction. 
The cost of the chip material is insig-
nificant compared with the cost of 
the consumables and instrumenta-
tion required for the traditional com-
mercial kits. In addition, because of 
the sample preparation chip’s simple 
design, a microchannel with pressure-
driven fluidic control, it may be easily 
integrated into a complete POC system.

Much of the focus for cancer POC 
biosensor development has been on 
protein analytes due to the existence 
of a more extensive set of validated 
protein tumour markers compared 
with other classes of biomolecules10,24. 
However, the clinical utility of many 
potential markers across different 
classes continues to be evaluated for 
their sensitivity and specificity to 
various cancers8,11. In total, a panel 
of DNA, miRNA, mRNA and protein 
tumour markers maybe envisioned in 
future as providing not only diagnostic 
utility but also information regarding 
tumour staging, disease recurrence 
and treatment choices or personal-
ized medicine. Therefore, the results 
of this study are consistent with a 
simply designed, easy-to-use, dispos-
able, cheap and rapid method that 
incorporates the capability to provide 
information on multiple classes of 
biomarkers.

A key advantage for thyroid cancer 
diagnosis in our system are the low 
limits of detection achievable, rang-
ing from 5 to 500 tissue culture cells 
and approximately 10 mg of tissue, for 
detection of miRNA, mRNA and DNA. 
These limits are well below the usual 
number of cells provided in most 
FNAB and fixed or frozen tissue speci-
mens40. Beyond enabling the detec-
tion of miRNA, mRNA and DNA, the 
µSPE chip extracted material was of 
sufficient purity for qPCR. This was 
true for both tissue culture cells 

Figure 3: Expression of 4 selected miRNA in thyroid nodule tissue extracted 
on-chip from triplicate qPCR validations for 14 individually analysed patient 
samples (differentially coloured). miR-222, miR-221, miR-146b and miR-375 
levels (solid and patterned bars) relative to RNU44 endogenous control are 
shown for (a) 7 malignant human thyroid specimens and (b) 7 normal or benign 
human thyroid specimens.
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(miRNA, mRNA, DNA) and thyroid tis-
sue (miRNA, DNA) and allowed quan-
tification of the target in each assay. 
As the variable expression levels of 
these biomarkers represent the molec-
ular profile of the patient’s tumour 
(benign vs. malignant, prognosis to 
certain drug therapies, etc.), quantita-
tive information is highly beneficial. 
To demonstrate the potential for clin-
ical utility of our approach, we chose 
biomarkers with high specificity for 

PTC, including miR-221, miR-222 and 
miR-146b, and the BRAF T1799A 
(a transversion mutation resulting in 
the V600E codon mutation)5,26,41. The 
use of optimized qPCR probes to de-
tect nucleic acid targets for miRNA 
and mRNA also increased the sensi-
tivity of this PCR-based approach and 
the use of AS–PCR for the BRAF 
DNA assay is a common method cur-
rently in use at clinical laboratories 
with equivalent or greater sensitivity 

than Sanger sequencing and 
pyrosequencing42.

In this study, expression of the 
biomarkers was highly variable, 
even among the histological subtypes. 
Although the BRAF V600E mutation 
is highly specific and has become 
accepted as a PTC marker, it must be 
noted that its accuracy may not be 
high (approximately 45%); it ranges 
from 30% to 80% depending on the 
population41,43. We have observed 
similar discrepancies in the literature 
regarding the variability of miRNA 
and mRNA expression, even in pub-
lished biomarker panels. Interestingly, 
differences exist between miRNA 
upregulation in PTC tumours; upreg-
ulated miR-146b was detected in 
tumours with mutant BRAF, although 
miR-221 or miR-222 may not be de-
tected.25,26,44,45. Unlike the BRAF V600E 
mutation and other DNA alterations 
in RAS, RET/PTC and PAX8/PPARγ, 
which are listed by the American 
Thyroid Association as molecular 
markers that may be considered in 
the management of patients with in-
determinate FNAB cytology, the diag-
nostic utility of miRNA, in general, is 
promising but not yet fully adopted46.
Therefore, our findings using small-
volume specimens correlate well with 
the published results.

The development of a full POC 
thyroid cancer test will require simul-
taneous optimization of chip design, 
development of protein detection and 
a continued effort in the medical and 
biomarker discovery communities to 
identify additional specific and sensi-
tive tumour markers such as those 
identified from micro array and pro-
tein array analyses. POC testing offers 
the advantages of faster diagnosis, 
limited reagent use, higher through-
put, portability, ease of use and dis-
posability. Our future work will add to 
the detection of proteins on-chip for 
integration with the current nucleic 
acid sample preparation chip and 
to create a chip where the entire 
process from specimen preparation 

Figure 4: DNA biomarker detection in thyroid tissue extracts. DNA was 
extracted on-chip from individual patients and eluted in two 50-µl fractions 
per patient. Fractions were assayed for mutant BRAF by allele-specific (AS)–
PCR using oligonucleotides complementary to the (a) reverse strand and the 
(b) forward strand sequences encoding the V600E mutation. Representative 
3% agarose gels are shown for both fractions from a subset of patients. Patients 
who were positive for the BRAF mutation had a 152-bp product in reverse 
strand AS–PCR and a 198-bp product in forward strand AS–PCR. GAPDH DNA 
was simultaneously amplified (247bp) in the same PCR reaction for each extract 
and served as an internal positive control for human DNA in the extract. For all 
PCR assays, the positive control DNA, (+)C, was from a known human thyroid 
cancer sample. Two negative controls were included in each PCR as shown in 
(a). These were a no-template control (−)1 and non-specific genomic DNA (−)2. 
(c) The amount of DNA present in the first 50 µl elution was determined by 
qPCR of the RNase P gene; the mean pg of DNA and 95% CI from 17 individual 
patient sample extracts is shown.
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to on-chip end-point validation can 
be performed.
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