Management of retinal diseases

N Kumar*

Abstract

Introduction
Many recent researches have contributed immensely in the management of retinal diseases. In this critical review, we discuss the management of retinal diseases.

Conclusion
Currently, age-related macular degeneration is managed primarily by anti-vascular growth factor agents. Newer reports on combination therapy may help in managing this visually debilitating condition in a better way. There are many new reports regarding the use of aflibercept and Ozurdex® (Allergan Inc., Irvine, California, USA) in the management of diabetic macular oedema and macular oedema associated with retinal vein occlusions. In the light of recent reports, retinopathy of prematurity may be often managed with bevacizumab. Introduction of ocriplasmin and Argus-II Retinal Prosthesis System (Second Sight Medical Products, Inc., Sylmar, California, USA) may offer ophthalmologists newer ways to treat some important vitreoretinal conditions.

Discussion

Age-related macular degeneration
AMD is the leading cause of visual loss, in the western world, in adults over 65 years of age. Choroidal neovascular membrane (CNVM; Figure 1) caused due to AMD, has been treated in the past with laser photocoagulation1 and photodynamic therapy2. A macular photocoagulation study group reported benefits of photocoagulation in the management of classical CNVM with well defined boundaries1. Patients with extrafoveal CNVM lost six lines or more in 48% of treated eyes as compared with 64% of untreated eyes, at five years. In cases of juxtafoveal CNVM, the loss was 49% in treated eyes and 68% in untreated eyes at three years. This landmark study, for the first time, showed that some stabilisation of visual acuity could be achieved in selected types of CNVM. However, this form of therapy had many drawbacks like the fact that the selected patients constituted only a minority of AMD cases. Additionally, patients did not have visual improvements. Scar formation and recurrences were common.

Treatment of subfoveal CNVM with laser photocoagulation left permanent scars and visual loss.

Photodynamic therapy (PDT) was introduced to overcome limitations of laser photocoagulation in the treatment of CNVM2. PDT comprises of a two-step procedure. The first step is to inject a photosensitising drug verteporfin (Visudyne, QLT Inc., Vancouver, British Columbia, Canada), intravenously. The second step is the activation of verteporfin with light from a non-thermal diode laser to treat CNVM. The TAP study2 showed that PDT-treated eyes had

* Corresponding author
Email: nkumareyemd@gmail.com
Al Bahar Eye Center Ibn Sina Hospital, Shuwaikh, Kuwait

Figure 1: Fluorescein angiogram showing CNVM.

Licensee OA Publishing London 2013. Creative Commons Attribution Licence (CC-BY)

Introduction of anti vascular endothelial growth factor (VEGF) agents has revolutionised the management of AMD3-6. The MARINA study group evaluated ranibizumab, a recombinant, humanised, monoclonal antibody that neutralises all active forms of VEGF for the treatment of neovascular AMD3. They showed that 94.5% of the group given 0.3 mg of ranibizumab and 94.6% of those given 0.5 mg, lost fewer than 15 letters, as compared with 64.3% of those in the verteporfin group. Visual acuity improved by 15 letters or more in 35.7% of the 0.3-mg group and 40.3% of the 0.5-mg group, as compared with 5.6% of the verteporfin group. These studies demonstrated that monthly intravitreal injections of ranibizumab not only stabilised visual acuity but also improved it in a significant number of patients. However, ranibizumab is an expensive drug. Bevacizumab, an off-label, anti-VEGF drug, was investigated as a cheaper alternative to ranibizumab5. Spaide et al.5 reported mean visual acuity improvement from 20/184 to 20/109 (p < 0.001); 38.3% of patients had visual acuity improvement after intravitreal injection of bevacizumab. The mean central macular thickness improved from 340 micron to 213 micron in the third month (p < 0.001). Later, the CATT and IVAN trials demonstrated similar efficacies of ranibizumab and bevacizumab in the management of neovascular AMD6,7. Bevacizumab was associated with higher cardiovascular complications in these trials although these results were not statistically significant.

Another anti-VEGF drug, aflibercept, has recently been studied8. Patients were randomised to intravitreal aflibercept of 0.5 mg monthly, 2 mg monthly, 2 mg every two months after three initial monthly doses or ranibizumab 0.5 mg monthly. They concluded that intravitreal aflibercept dosed monthly or every two months after three initial monthly doses, produced similar efficacy and safety outcomes as monthly ranibizumab. Less frequent dosing of aflibercept is generating lots of interest.

Now ranibizumab is being combined with other agents to further enhance its potency. The MONET clinical study group reported that the combination of siRNA PF-04523655 with ranibizumab led to an average gain in best-corrected visual acuity that was more than with ranibizumab monotherapy8. In a prospective, randomised, controlled, phase 2b trial, the combination of anti-platelet derived growth factor Fovista (Ophthotech, Princeton, New Jersey, USA) and ranibizumab, was shown to have superior efficacy as compared with ranibizumab monotherapy10. Patients who received the combination gained a mean of 10.6 letters of vision on the early treatment diabetic retinopathy study (ETDRS) standardised chart, whereas those who received ranibizumab monotherapy gained a mean of 6.5 letters of vision.

Diabetic retinopathy

DR is the leading cause of blindness in the adult population (20–64 years) in the USA. The DR study was...
a randomised, controlled clinical trial involving more than 1700 patients enrolled at 15 medical centres. This pioneering study demonstrated that both argon and xenon photocoagulation reduced the risk of severe visual loss by more than 50% in eyes with proliferative DR (Figure 2) with high risk characteristics. The ETDRS was a randomised clinical trial supported by the National Eye Institute. In this study, 754 eyes that had macular oedema and mild to moderate DR were randomly assigned to focal argon laser photocoagulation, while 1490 such eyes were randomly assigned to a deferral of photocoagulation. The study demonstrated that laser photocoagulation of ‘clinically significant’ diabetic macular oedema (CSME) substantially reduces the risk of moderate visual loss (24% in treated eyes vs. 12% in untreated eyes). This left many patients with macular oedema and mild to moderate DR were randomly assigned to focal or grid laser photocoagulation in patients with centre-involving CSME without advanced macular ischemia. Recently, a new anti-VEGF agent, aflibercept, has been investigated in the management of DME. The DA VINCI study group authors compared aflibercept with laser photocoagulation in eyes with DME. They reported significant gains in visual acuity in eyes treated with aflibercept. Intravitreal injection of corticosteroids has also been used in the management of DME. Now a dexamethasone intravitreal implant (Ozurdex®; Allergan Inc., Irvine, California, USA) has been studied in the management of DME. The BRAVO study investigators compared ranibizumab with laser photocoagulation for patients with branch retinal vein occlusion (BRVO; Figure 3) in selected patients. In this study, 63% of laser-treated eyes improved two or more lines of vision compared to 36% of control eyes after three years of follow-up care. It also recommended peripheral scatter laser photocoagulation for patients with branch vein occlusion who had developed neovascularisation. The development of vitreous haemorrhage was significantly less in laser-treated eyes (30% in laser-treated eyes vs. 60% in control eyes). Recently, anti-VEGF agents have been studied in the management of BRVO. The BRAVO study investigators reported that intravitreal injections of ranibizumab provided rapid and effective treatment for macular oedema following BRVO. The percentage of patients who gained > or = 15 letters of vision at six months was 55.2% (0.3 mg) and 61.1% (0.5 mg) in the ranibizumab groups and 28.8% in the placebo group. The management of central retinal vein occlusion (CRVO; Figure 4) was studied by a National Eye Institute sponsored multicentre, central vein occlusion study group. CRVO-associated macular oedema was treated by macular grid laser photocoagulation. They found no difference between treated and untreated eyes in visual acuity. So treatment of macular oedema by macular grid photocoagulation in CRVO was not recommended. However, they recommended panretinal laser photocoagulation (PRP) of eyes, which developed two clock hours of iris neovascularisation or any angle neovascularisation following CRVO. They also concluded that prophylactic PRP did not prevent the development of iris neovascularisation and recommended to wait for the development of early iris neovascularisation and then do PRP. The CRUISE investigators studied ranibizumab for macular oedema following CRVO. Ranibizumab-treated patients (0.3 mg = 43.9%; 0.5 mg = 46.9%) had significantly better visual outcome than focal/grid laser treatment in patients with DME.

RVOs (branch and central) are important retinal conditions with significant ocular morbidity. The branch RVO study was a prospective, randomised, controlled, multicentre study. It recommended laser photocoagulation for macular oedema due to branch retinal vein occlusion (BRVO; Figure 3) in selected patients. In this study, 63% of laser-treated eyes improved two or more lines of vision compared to 36% of control eyes after three years of follow-up care. It also recommended peripheral scatter laser photocoagulation for patients with branch vein occlusion who had developed neovascularisation.
significantly better visual acuity of > or = 20/40 compared with placebo patients (20.8%). Recently, Brown et al. (COPERNICUS study) reported favourable outcomes in the treatment of macular oedema following CRVO by aflibercept. At week 24, 56.1% of aflibercept-treated patients gained ≥ 15 letters from baseline compared with 12.3% of placebo patients. This trend continued later at one year follow up. Dexamethasone intravitreal implant also has been studied in patients with macular oedema due to RVO. The OZURDEX GENEVA study group reported that the dexamethasone intravitreal implant can both reduce the risk of vision loss and improve the speed and incidence of visual improvement in eyes with macular oedema secondary to BRVO or CRVO.

Retinopathy of prematurity
ROP is a vasoproliferative disorder of the eye affecting premature infants. It may result in profound visual impairment or blindness in its severe forms. Cryotherapy for visual impairment or blindness in infants. It may result in profound of the eye affecting premature infants in the laser-therapy group. Recently, indirect laser photocoagulation of ROP was achieved in 40.6% of ocriplasmin-injected eyes, as compared with 10.6% of placebo-injected eyes. The Diabetic Retinopathy Clinical Research Network tried to answer whether intravitreal ranibizumab could reduce vitrectomy rates as compared with saline for vitreous haemorrhage from proliferative diabetic retinopathy (PDR). They concluded that there was little likelihood of a clinically important difference between ranibizumab and saline on the rate of vitrectomy in eyes with vitreous haemorrhage from PDR. However, there was visual acuity improvement, increased panretinal photocoagulation completion rates and reduced recurrent vitreous haemorrhage rates, in the ranibizumab group. Research is ongoing to restore vision in eyes with diseases like retinitis pigmentosa. Humayun et al. have evaluated the Argus II Retinal Prosthesis System (Second Sight Medical Products, Inc., Sylmar, California, USA) in blind subjects. The electronic stimulator and antenna of the implant were sutured onto the sclera. The microelectrode array was tacked to the epiretinal surface after performing pars plana vitrectomy. Patients performed better in object localisation, motion discrimination and discrimination of oriented gratings.

Conclusion
Newer studies about aflibercept, combination therapy of ranibizumab, Ozurdex® (Allergan Inc., Irvine, California, USA), ocriplasmin and Ang- II Retinal Prosthesis System (Second Sight Medical Products, Inc., Sylmar, California, USA), hold promise for better management of vitreoretinal disorders.

Abbreviations list
AMD, age-related macular degeneration; BRVO, branch retinal vein occlusion; CNVM, choroidal neovascular membrane; CRVO, central retinal vein occlusion; CSME, clinically significant diabetic macular oedema; DME, diabetic macular oedema; DR, diabetic retinopathy; ETDRS, early treatment diabetic retinopathy study; PDR, proliferative diabetic retinopathy; PDT, photodynamic therapy; PRP, panretinal laser photocoagulation; ROP, retinopathy of prematurity; RVO, retinal vein occlusion; VEGF, vascular endothelial growth factor

References


Licensee OA Publishing London 2013. Creative Commons Attribution Licence (CC-BY)