The aortic valve and its root: the modern Babylonian tower still stands

WP Mistiaen*

Abstract
Introduction
The complexity of the aortic valve and aortic root is appreciated, especially by specialists in medical imaging and by surgeons who design and perform aortic valve repair. However, the terminology used to describe the components of the valve differs between different specialists and even within one group of specialists. The aim of this review was to discuss the aortic valve and its root.

Discussion
The following structures need proper labelling before the root itself can be described unequivocally: valve leaflets, commissures, sinuses of Valsalva, interleaflet triangles, sinutubular junction and ventriculo-aortic junction. Especially the latter deserves attention since there is an anatomic as well as a haemodynamic junction. The difference between both junctions is the key to understand the aortic valve. Its understanding is also of vital importance for surgeons in performing durable aortic valve reparations.

Conclusion
The differences in terminology of the components of the aortic valve are probably long lasting. Therefore, a clarifying definition of every component described in any scientific manuscript should be provided.

*Corresponding author
Email: wilhelm.mistiaen@uantwerpen.be
University of Antwerp, Faculty of Medicine & Health Sciences, Artesis-Plantijn University College of Antwerp, Dept. of Healthcare Sciences, J De Boeckstr. 10, 2170 Antwerp, Belgium.

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)

Critical review

The aortic valve connects the left ventricle (LV) with the arterial circulation. Its main function is ensuring a unidirectional flow of blood: it allows its movement distally during systole, while backflow during diastole is prevented. The valve is more than a passive unidirectional gate: a laminar flow with minimal resistance is maintained during systole. Its superiority over biological and mechanical valve prostheses prompted several investigators to develop techniques to repair diseased aortic valves, whenever possible. To understand the physiological effects of these operations and to compare their results, a set of standardised and consistent definitions of every part of the aortic valve is needed. Recently, a survey revealed that differences exist between cardiac surgeons in labelling the components of the aortic root. This is of importance, since the aortic valve is the second most frequent site of surgical intervention. There is also a risk of variable agreement among untrained data abstractors. Without consistent standardised definitions, aggregate data in clinical databases should be treated with caution. A description of the aortic root in this manuscript is preceded by the description of its components. The preferable terms and their alternatives are summed up in Table 1. Their orientation must also be expressed in a proper way (Table 1). The parts needing description are the leaflets, the sinuses, the sinotubular junction (STJ), the commissures and the interleaflet triangles. The most controversial part is the aortic annulus with the anatomic and haemodynamic ventriculo-aortic junction (VAJ).

Discussion
The components of the aortic root
The leaflets are thin, centrally located, free moving parts of the valve (Figures 1 and 2). This term is preferable above ‘cusps’. They have several components including the semilunar attachment, an almost transparent belly and a crescent-shaped lunula at the full length of the free margin, which is the area of coaptation. These lunula close the LV from the aorta and carry at the centre of the nodule of Arantius. The attachments transmit the stress of the leaflets to the aortic wall through collagen fibres. The length of the free margin and the height of the leaflet are important parameters. The maximal height of the leaflet is less than the height of the sinuses, but considerable variations between individuals have been reported. Pathological retraction of leaflets makes them unsuitable for repair. However, retraction is not easy to define, and poor measurement of the height may lead to its underestimation. There is no consensus of which leaflet is the largest, but the observed differences seem statistically not significant. The non-coronary leaflet is exclusively fibrous, whereas both other leaflets can contain small portions of ventricular muscle. This could play a role in arrhythmias. The right coronary leaflet attaches to the predominantly muscular region of the LV outflow tract. The non-coronary leaflet arises exclusively from the area where the left coronary leaflet is continuous (Figure 2) with the mitral valve.
Table 1 Names for structures

<table>
<thead>
<tr>
<th>Preferable</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic annulus</td>
<td>Virtual or base annulus, VAJ</td>
</tr>
<tr>
<td>Aortic valve</td>
<td></td>
</tr>
<tr>
<td>Cusps only</td>
<td>Sinuses + triangles + STJ + attachment of the leaflets to the wall</td>
</tr>
<tr>
<td>Aortic root</td>
<td></td>
</tr>
<tr>
<td>- Sinuses + triangles + STJ + commissures + leaflets</td>
<td>- sinuses + triangles + STJ + commissures without leaflets</td>
</tr>
<tr>
<td>Leaflets</td>
<td>Semilunar valvules, cusps</td>
</tr>
<tr>
<td>Leaflet orientation</td>
<td></td>
</tr>
<tr>
<td>- Non-coronary</td>
<td>Posterior*, non-adjacent*</td>
</tr>
<tr>
<td>- Left coronary</td>
<td>Sinistra*, left posterior*</td>
</tr>
<tr>
<td>- Right coronary</td>
<td>Dextra*</td>
</tr>
<tr>
<td>Leaflet attachment</td>
<td>Semilunar ring, hemodynamic VAJ, crown-like ring</td>
</tr>
<tr>
<td>Lunula</td>
<td>Lannula</td>
</tr>
<tr>
<td>Semilunar attachment</td>
<td>Hinge-lines</td>
</tr>
<tr>
<td>Sinuses; advantage of alternatives: abnormal coronary ostia</td>
<td></td>
</tr>
<tr>
<td>- Non-coronary</td>
<td>Right posterior, posterior</td>
</tr>
<tr>
<td>- Left coronary</td>
<td>Left posterior</td>
</tr>
<tr>
<td>- Right coronary</td>
<td>Anterior</td>
</tr>
<tr>
<td>Triangles</td>
<td>Trigones, intercommisural trigones or triangles, interleaflet trigone or triangle, fibrous trigones</td>
</tr>
</tbody>
</table>

Orientation terms

<table>
<thead>
<tr>
<th>Proximal</th>
<th>Basal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distal*</td>
<td>Ascending, apical</td>
</tr>
</tbody>
</table>

The commissures can be defined as the place of attachment of the lunula to the aortic wall, close to the STJ (Figure 1). These commissures separate the leaflets and are the most distal parts of a crown-like structure. Their fibrous tissue suspend the leaflets. However, some authors consider the commissures only as the peripheral parts where the free edges of the leaflets run parallel and coapt. The majority of surgeons consider both the area of attachment and the coapting parts as commissures.

The sinuses of Valsalva (Figures 3 and 5) share the name with the corresponding leaflets. The distal boundary is the STJ and the proximal border is the attachment of the leaflets. Within the interior of the right and left coronary (also called anterior), sinuses are the right and left coronary ostia. The sinuses allow coronary perfusion during diastole and prevent their occlusion during systole. They also show a crescent of ventricular muscle at the base (Figure 2). The non-coronary sinus has only fibrous tissue. The right coronary sinus is the largest and the left one the smallest. The three sinuses are functionally comparable and have a stress-sharing mechanism for the leaflets, which contributes to the durability of the native aortic valve. In valve-sparing root replacement surgery, these sinuses can be reconstructed, which could improve the durability of the repair, but these procedures are not standardised. There is a relation to the surrounding structures which has its importance in case of rupturing aneurysms.

The triangles, sometimes unjustly called trigones, are located between the anatomic VAJ and the semilunar attachment of the leaflets. The latter give the sides a parabolic shape. These triangles only contain fibrous tissue and are extensions of the LVOT and reach the STJ or the commissures. There is a proximity between the most distal parts and the pericardial space. The triangles have a specific height, which reduces with dilated annulus. This can be corrected by annuloplasty.

The sinutobular junction forms the distal boundary of the aortic root. This is the location of the distal end of the attachment of the leaflets. The STJ plays an integral part of the valve mechanism: dilatation of the STJ leads to valve regurgitation. The shape of the STJ is not perfect circular, but follows the sinuses as a trefoil. Thickening and calcification of the STJ could serve as a marker of atherosclerotic disease. The openings of the coronary arteries are closely below the STJ (Figure 2).

The cardiac skeleton supports the aortic valve, which is the centrepiece (Figures 3 and 4). The aorto-mitral continuity (AMC) is located into the roof of the LV. Its fibrous tissue

For citation purposes: Mistiaen WP. The aortic valve and its root: the modern Babylonian tower still stands. OA Anatomy 2013 Dec 01;1(3):29.
Figure 1: An unfixated aortic valve from cranial view, with the three thin and movable leaflets at its centre. The sinuses with the origins of the coronary arteries have largely been removed for the sake of visibility. The needles puncture the most distal points of attachment of the leaflets to the aortic wall, at the level of the STJ. This area could be called commissures.

extends into the anterior mitral leaflet (Figures 2 and 5). The strongest portion of the skeleton of the heart is the central fibrous body, the union of the right fibrous trigone, where the aortic, mitral and tricuspid valve connect, and the membranous part of the ventricular septum. The left trigone is smaller and located at the left angle between the two valves. Both trigones are continuous with the fibrous area between the valvar leaflets.

The conduction system is just below the aortic valve. The atrioventricular node is located between the septal attachment of the tricuspid valve, the orifice of the coronary venous sinus and the membranous septum. It penetrates the central fibrous body and reaches the crest of the muscular ventricular septum. Its most important relationship is the base of the triangle between the right and the non-coronary leaflets. This has its importance in transcatheter valve replacement, since the left bundle can be compromised during the procedure.

The aortic valve can be considered as a part of the aortic root. Most surgeons restrict the term aortic valve to the three leaflets, the only parts that are replaced by prosthesis. Other authors also include the sinuses, the STJ and the triangles. This is supported by the view that abnormalities that do not include the leaflets (such as dilation of the STJ) render the valve incompetent. The size of all parts can be measured in a reliable way by CT angiography, which has its importance as preparation for transcatheter implantation. However, a standardised approach to the measurement of the aorta is needed, and features suggestive of an underlying connective tissue disorder should be recognised. Radiologists should be aware of the image limitations and clinical implications of reported measurements.

The aortic root is the centre-piece and is wedged between the mitral and tricuspid orifice and relates to all cardiac cavities. The aortic root contains the commissures, annulus, triangles, sinuses, STJ and leaflets. It is the continuation of the LVOT and is located between the attachment of the leaflets and the STJ. The root supports and surrounds the leaflets.
throughout the cardiac cycle can be detected using CT angiography with high spatial and temporal resolution\(^9,21\). An animal experiment has shown a precise chronology: at the end of diastole the aortic root is more as a truncate cone in shape. During systole, the aortic root is more cylindrical because of the changes at commissural level; this facilitates ejection\(^22\), minimises transvalvular turbulence and reduces stress applied on the leaflets\(^23\). The size of all levels should be measured in preparation of transcatheter valve replacement. Using echocardiography, the planes of transsection should be chosen carefully\(^10\).

No single structure mentioned above should be called the aortic annulus. Some state the aortic annulus does not really exist\(^6\), or do not discern a true fibrous ring\(^12\). Others call the aortic root ‘well defined’\(^5\) or describe it on anatomical or on echocardiographic grounds\(^9,13,24\). The term annulus means ring, but there are several rings, which are not all anatomically discrete structures\(^10\). These rings are from proximal to distal in (i) a virtual ring formed by the line connecting most proximal attachment of the leaflets, the inlet from the LVOT into the root\(^5,7,12,13\), (ii) the VAJ, which can be considered as a true anatomical ring, fixed firmly at the LV and at the trigones\(^5\) and (iii) the STJ. The semilunar attachment of the leaflets has the shape of a crown and is located between the first virtual ring and the third ring and crosses the anatomical VAJ\(^5\). Some authors call this VAJ the annulus\(^1,16\) which can be measured with a Hegar dilator. Others call the crown-shaped attachment the annulus\(^9\) since it can be reconstructed by placing sutures with pledgets along the curves\(^14\). It seems reasonable to avoid this discussion by labelling the STJ plus the basal ring as the root.

It serves as natural stent and needs correction in case of dilation with valve regurgitation\(^14,25\).
Critical review

Mathematical models allow the construction of the complex 3D geometry of the root with a small margin of error. It could serve as an alternative for difficult 3D imaging in preparation for surgical repair. Individual variability as well as changes during the cardiac cycle have to be taken into account. However, application of geometric formula seems less important than surgical skills in restoring the valve-sparing aortic root. Moreover, preoperative measuring of the various components with subsequent tailoring of the graft seems more accurate. ECG-triggered MRI and CT imaging also might offer 3D constructions which take the motion during the cardiac cycle into account. There must be sufficiently high temporal and spatial resolution. This has profound implications for reparative surgery of the aortic valve, since the dynamic behaviour of the root after reparation affects the movements of the leaflets.

Conclusion

The differences in terminology and hence the potential for confusion are probably to stay. For this reason, every author should define each structure mentioned in any scientific manuscript. Some etymological differences such as 'cusp – leaflet' do cause serious difficulties. Defining the aortic annulus is much more problematic and has much more implications.

Abbreviations list

AMC, aorto-mitral continuity; LV, left ventricle; LVOT, LV outflow tract; STJ, sinotubular junction; VAJ, ventriculo-aortic junction.

References

2. Yacoub MH, Kilner PJ, Birks EJ, Misfeld M. The aortic outflow and root: a tale of...
The three sinuses of Valsalva while the aortic root is open. The top line (black) shows the STJ. The red line represents the attachment of the leaflets, which is also the hemodynamic VAJ. When the aorta is closed, they form the so-called crown-shaped junction. The blue line indicates where the muscle of the LV gives way to the fibrous tissue of the aortic root. This is the anatomic VAJ. The virtual green line connects the most basal parts of the attachment of the leaflets, and hence of the sinuses. Understanding the significance of these different ‘rings’ is essential for understanding the function of the aortic valve. The triangles are indicated by the red lines (the parabolic sides) and the blue line (bottom side). The aorto-mitral continuity can be observed at the left side.

Figure 5: The three sinuses of Valsalva while the aortic root is open. The top line (black) shows the STJ. The red line represents the attachment of the leaflets, which is also the hemodynamic VAJ. When the aorta is closed, they form the so-called crown-shaped junction. The blue line indicates where the muscle of the LV gives way to the fibrous tissue of the aortic root. This is the anatomic VAJ. The virtual green line connects the most basal parts of the attachment of the leaflets, and hence of the sinuses. Understanding the significance of these different ‘rings’ is essential for understanding the function of the aortic valve. The triangles are indicated by the red lines (the parabolic sides) and the blue line (bottom side). The aorto-mitral continuity can be observed at the left side.

Critical review

Critical review